Skip to content

  1. About us
  2. Our people
  3. Staff profiles
  4. Dr Torsten Schenkel

Dr Torsten Schenkel Dr.-Ing. habil., CEng, MIET, FIMechE

Associate Professor of Continuum Mechanics


Summary

I am a classical Fluid-Dynamicist with a PhD and Habilitation from the Karlsruhe Institute of Technology (KIT) in Germany. My research interests are interdisciplinary with a focus on physiological flows.

About

After completing my studies of Mechanical Engineering at the University of Karlsruhe, I worked with the European Space Agency developing optical measurement methods for microgravity convection flows. From 2002, I worked towards the "Habilitation" (professorial degree, higher doctorate, venia legendi) developing in-silico models for the blood flow in a pumping patient-specific human heart. I was awarded the venia legendi for Fluid Mechanics by the Karlsruhe Institute of Technology (KIT) in 2010. After a short interval as acting head of the Institute of Fluid Mechanics at the KIT, I left Germany to help establish the South Korean overseas branch campus and graduate school in Chemical and Bioengineering for the Friedrich-Alexander University, Erlangen-Nuremberg, serving as Campus Vice President. I was also teaching as a guest professor for physics at the Dongseo University, Busan. After two years as expat, working in a mostly administrative role, I decided to return to research and teaching and took up the role of Senior Lecturer at Sheffield Hallam University, where I is teaching Fluid- and Thermodynamics and Numerical Methods. In 2011, I was invited to be the session introductory speaker at the Japanese-German Frontier of Science Symposium (JaGFoS) of the Alexander von Humboldt Foundation. I am a Chartered Engineer and Fellow of the Institute of Mechanical Engineers.

Specialist areas of interest:
Torsten's research interests are centred on the numerical and experimental modelling and the prediction of flow behaviour in multi-scale, multi-physics setups and validation and verification. This includes internal and external flows while the main aspects of his research are the interaction between flow and structures in physiological flows, the interaction of turbulence with the main flow, especially in boundary layers, pressure gradient driven separation on blunt bodies and the unsteady dynamics of the separated flow regions like the wake of blunt bodies or separation bubbles in inner flows.

Teaching

Department of Engineering and Mathematics

Business, Technology and Enterprise

Thermofluids

BEng Aerospace Engineering, MEng Aerospace Engineering

Aerodynamic Principles, Thermofluid Dynamics (Aero), Advanced Aerospace Computational Methods.

Research

Multi-scale hemodynamic modelling to predict atherosclerotic risk to flow induced shear, Fluid-Structure-Interaction (FSI) methods for aero-elasticity and biomechanics, Optical measurement methods.

  • Department of Cardiovascular Biology - University of Sheffield
  • Insigneo - Institute for in silico medicine, Sheffield
  • Heart of England NHS Foundation Trust
  • Department of Mechanical Engineering and Clinical Engineering, Brunel University

Publications

Journal articles

Schenkel, T., & Halliday, I. (2021). Continuum Scale Non Newtonian Particle Transport Model for Hæmorheology. Mathematics, 9 (17). http://doi.org/10.3390/math9172100

Spendlove, J., Xu, X., Schenkel, T., Seaton, M., Halliday, I., & Gunn, J. (2021). Three-dimensional single framework multi-component lattice Boltzmann equation method for vesicle hydrodynamics. Physics of Fluids, 33 (7), 077110. http://doi.org/10.1063/5.0055535

Bigharaz, M., Schenkel, T., & Bingham, P. (2020). Increasing force generation in electroadhesive devices through modelling of novel electrode geometries. Journal of Electrostatics, 109. http://doi.org/10.1016/j.elstat.2020.103540

Owen, D., Schenkel, T., Shepherd, D., & Espino, D. (2020). Assessment of surface roughness and blood rheology on local coronary hemodynamics: a multi-scale computational fluid dynamics study. Journal of the Royal Society Interface. http://doi.org/10.1098/rsif.2020.0327

Spendlove, J., Xu, X., Halliday, O.J., Schenkel, T., & Halliday, I. (2020). Chromodynamic multirelaxation-time lattice Boltzmann scheme for fluids with density difference. Physical Review E (PRE), 102 (1). http://doi.org/10.1103/PhysRevE.102.013309

Schenkel, T., & Halliday, I. (2020). Continuum Scale Non Newtonian Particle Transport Model for Haemorheology -- Implementation and Validation. Arxiv Preprint.

Spendlove, J., Xu, X., Schenkel, T., Seaton, M., & Halliday, I. (2020). Chromo-dynamic multi-component lattice Boltzmann equation scheme for axial symmetry. Journal of Physics A: Mathematical and Theoretical, 53 (14), 145001. http://doi.org/10.1088/1751-8121/ab777f

Alfaidi, M.A., Chamberlain, J., Rothman, A., Crossman, D., Villa‐Uriol, M., Hadoke, P., ... Francis, S.E. (2018). Dietary Docosahexaenoic Acid Reduces Oscillatory Wall Shear Stress, Atherosclerosis, and Hypertension, Most Likely Mediated via an IL‐1–Mediated Mechanism. Journal of the American Heart Association, 7 (13), e008757. http://doi.org/10.1161/JAHA.118.008757

Halliday, I., Lishchuk, S., Spencer, T., Burgin, K., & Schenkel, T. (2017). Interfacial Micro-currents in Continuum-ScaleMulti-Component Lattice Boltzmann Equation Hydrodynamics. Computer Physics Communications, 219, 286-296. http://doi.org/10.1016/j.cpc.2017.06.005

Luong, L., Duckles, H., Schenkel, T., Mahmoud, M., Tremoleda, J.L., Wylezinska-Arridge, M., ... Evans, P.C. (2016). Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thrombosis and Haemostasis, 116 (1), 181-190. http://doi.org/10.1160/TH16-03-0214

Luong, L., Duckles, H., Schenkel, T., Arnold, N., Gsell, W., Lungu, A., ... Evans, P. (2014). Abstract 258: A Pharmacological Approach to Promote Shear Stress-Dependent Anti-inflammatory Mechanisms in Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 34 (Suppl), A258. http://atvb.ahajournals.org/content/34/Suppl_1/A258

Perschall, M., Drevet, J.B., Schenkel, T., & Oertel, H. (2012). The progressive wave pump: numerical multiphysics investigation of a novel pump concept with potential to ventricular assist device application. Artificial organs, 36 (9), E179-E190. http://doi.org/10.1111/j.1525-1594.2012.01495.x

Kobayashi, S., Adachi, T., Suzuki, T., Debatin, K., Schenkel, T., & Oertels, H. (2011). Non-self-similarity in mach reflection of weak shock waves: effects of transport properties and surface roughness. Theoretical and Applied Mechanics Japan, 59, 233-244. http://doi.org/10.11345/nctam.59.233

Schenkel, T., Krittian, S., Muehlhausen, M.-.P., & Oertel, H. (2010). Hemodynamics and Fluid-Structure-Interaction in a Virtual Heart. it - Information Technology : Methoden und innovative Anwendungen der Informatik und Informationstechnik, 52 (2), 250-257. http://doi.org/10.1524/itit.2010.0599,

Krittian, S., Schenkel, T., Janoske, U., & Oertel, H. (2010). Partitioned fluid-solid coupling for cardiovascular blood flow: validation study of pressure-driven fluid-domain deformation. Annals of Biomedical Engineering, 38 (8), 2676-2689. http://doi.org/10.1007/s10439-010-0024-4

Reik, M., Höcker, R., Bruzzese, C., Hollmach, M., Koudal, O., Schenkel, T., & Oertel, H. (2010). Flow rate measurement in a pipe flow by vortex shedding. Forschung im Ingenieurwesen, 74 (2), 77-86. http://doi.org/10.1007/s10010-010-0117-0

Schenkel, T., Malve, M., Reik, M., Markl, M., Jung, B., & Oertel, H. (2009). MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Annals of Biomedical Engineering, 37 (3), 503-515. http://dx.doi.org/10.1007/s10439-008-9627-4

Cheng, Y., Oertel, H., & Schenkel, T. (2005). Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase. Annals of Biomedical Engineering, 33 (5), 567-576. http://www.springerlink.com/index/10.1007/s10439-005-4388-9

Cheng, Y., Oertel, H., Zuercher, L., & Schenkel, T. (2003). 3D CFD Simulation of Pulsatile Blood Flow in the Human Aorta. Chinese Journal of Biomedical Engineering (English Edition), 12 (4), 174-183.

Conference papers

Schenkel, T., Spencer, T., & Halliday, I. (2019). Non Newtonian Particle Transport Model For Haemorheology. In Thurner, P., Pahr, D., & Hellmich, C. (Eds.) European Society of Biomechanics ESBiomech Conference, Vienna, Austria, 7 July 2019 - 10 July 2019 (pp. 60). Congress of the European Society of Biomechanics

Koenig, C., Atherton, M., Cavazzuti, M., Ramachandran, S., Gomm, C., Strange, R., ... Schenkel, T. (2017). P83 A pilot study to assess peak systolic velocity as a possible marker of atherosclerotic burden using ultrasound. Artery Research, 20 (C), 76. http://doi.org/10.1016/j.artres.2017.10.099

Koenig, C., Atherton, M., Cavazzuti, M., Ramachandran, S., Gomm, C., Strange, R., ... Schenkel, T. (2017). P83 A pilot study to assess peak systolic velocity as a possible marker of atherosclerotic burden using ultrasound. Artery Research, 20 (C), 76. http://doi.org/10.1016/j.artres.2017.10.099

Power, S., Nortcliffe, A., Vernon-Parry, K., & Schenkel, T. (2016). Engineering learning through aerospace engineering. In Annual International Conference on Engineering Education & Teaching, Athens, Greece. Athens Institute for Education and Research: http://www.atiner.gr/papers/ENGEDU2016-2003.pdf

Schenkel, T. (2015). Of Mice and Men: Is Allometric Scaling Applicable to the Flow in the Aorta? In 21st Congress of the European Society of Biomechanics, Prague, Czech Republic, 5 July 2015 - 8 July 2015.

Alfaidi, M., Schenkel, T., Evans, P., Chamberlain, J., & Francis, S. (2015). 192 dietary docosahexaenoic acid reduced experimental atherosclerosis by inducing protective haemodynamic conditions [abstract only]. Heart, 101 (Suppl), A107. http://doi.org/10.1136/heartjnl-2015-308066.192

Schenkel, T. (2015). Grid Resolution and Shear Stress Scaling Issues from the Aortic Mouse Model to the Human Aorta. In The 10th international symposium on Biomechanics in Vascular Biology and Cardiovascular Disease, Rotterdam.

Schenkel, T., Baumann, T., Loges, A., Wetzel, T., & Stieglitz, R. (2011). Modeling the turbulent heat fluxes in low Prandtl number shear flows. In 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH-14}, Toronto.

Ruck, S., Tischmacher, M., Schenkel, T., & Oertel, H. (2010). Biofluidmechanics of avian flight : recent numerical and experimental investigations. In Goh Cho Hong, J., & Lim, C.T. (Eds.) 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore : In Conjunction with 14th International Conference on Biomedical Engineering (ICBME) & 5th Asia Pacific Conference on Biomechanics (APBiomech), (pp. 14-17). Springer: http://doi.org/10.1007/978-3-642-14515-5_4

Schenkel, T., Krittian, S., Spiegel, K., Höttges, S., Perschall, M., & Oertel, H. (2010). The Karlsruhe Heart Model KaHMo: a modular framework for numerical simulation of cardiac hemodynamics. In Dössel, O., & Schlegel, W.C. (Eds.) World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany : image processing, biosignal processing, modelling and simulation, biomechanics, (pp. 615-618). Springer Berlin Heidelberg: http://dx.doi.org/10.1007/978-3-642-03882-2/_163

Perschall, M., Spiegel, K., Schenkel, T., & Oertel, H. (2010). Effects of VAD placement on 3D fluid flow in a patient specific numerical model of the left ventricle with ischemic heart failure. In Dössel, O., & Schlegel, W.C. (Eds.) World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany : image processing, biosignal processing, modelling and simulation, biomechanics, (pp. 611-614). Springer Berlin Heidelberg: http://dx.doi.org/10.1007/978-3-642-03882-2/_162

Ruck, S., & Schenkel, T. (2010). Vortex Configuration behind Flapping Wings. In IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibrations, Capri, Italy, 22 June 2010 - 25 June 2010. http://iutam.org/iutam-symposium-on-bluff-body-wakes-and-vortex-induced-vibrations/

Krittian, S., Höttges, S., Schenkel, T., & Oertel, H. (2009). Multi-physical simulation of left-ventricular blood flow based on patient-specific MRI data. In Lim, C.T., & Goh, J.C.H. (Eds.) 13th International Conference on Biomedical Engineering, (pp. 1542-1545). Berlin, Heidelberg: Springer: http://www.springerlink.com/content/w5154kg745122605/%20http://dx.doi.org/10.1007/978-3-540-92841-6/_382

Krittian, S., Schenkel, T., & Oertel, H. (2008). Partitioned FEM/FVM Coupling for Cardiac Fluid-Structure Interaction with a Macroscopic Composite Approach. In XXII International Congress of Theoretical and Applied Mechanics, Adelaide, Australia.

Krittian, S., Schenkel, T., Kroeger, R., Janoske, U., & Oertel, H. (2008). Fluent-Controlled Implicit Coupling with Abaqus using MpCCI. In 9th MpCCI User Forum, Schloss Birlinghoven, Germany.

Krittian, S., Schmid, H., Schenkel, T., & Oertel, H. (2007). Preconditions for a Fluid Structure Interaction of the Human Heart using Fluent, Abaqus and MpCCI. In 8th MpCCI User Forum, Schloss Birlinghoven, Germany. Fraunhofer Institute

Perschall, M., Spiess, H., Schenkel, T., & Oertel, H. (2007). Code Adapter for Arbitrary Prescribed Motion and Deformation using Fluent and MpCCI. In 8th MpCCI User Forum, Schloss Birlinghoven, Germany.

Krittian, S.B.S., Schenkel, T., & Oertel, H. (2007). Simulation of left-ventricular myocardial deformation for fluid domain movement. Proceedings of the Fifth IASTED International Conference on Biomechanics, BioMech 2007, 84-89.

Schenkel, T., & Oertel, H. (2006). Numerical simulation of the asymmetric redirection of blood flow in the left ventricle. Journal of Biomechanics, 39 (S. 1), S310. http://doi.org/10.1016/S0021-9290(06)84213-2

Kobayashi, S., Adachi, T., Debatin, K., Schenkel, T., & Oertel, H. (2004). Effect of surface roughness on Mach reflection. In XXI International Congress of Theoretical and Applied Mechanics : Shock Waves, Warsaw, Poland, 15 August 2004 - 21 August 2004 (pp. 1-2). Warsaw, Poland

Schenkel, T., Meyer, S., & Oertel, H. (2003). Flow in a human model aorta. In XXth World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia, 2003. Sydney, Australia

Schenkel, T., Keber, R., & Oertel, H. (2003). Flow in a Pumping Human Ventricle. In World Congress on Medical Physics and Biomedical Engineering, Sydney, Australia.

Oertel, H., & Schenkel, T. (2001). Application of advanced fluid information in aeroacoustics. 1st International Symposium on Advanced Fluid Information, 19-23.

Schenkel, T., Stoynov, M., & Oertel, H. (2000). Stability of shear layers in the interface of a binary liquid system - Experiment definition, 3-d numerical problem formulation, 2-d numerical results for ground based preparation experiments on basic flow. In 1st International Symposium on Microgravity Research and Applications in Physical Science and Biotechnology, ESA, Sorrento Italy, 10 September 2000 - 15 September 2000. Sorrento, Italy

Schenkel, T., & Debatin, K. (2000). Reconstruction of 3-dimensional density distributions by tomographic interferometry. In Cariomagno, G.M., & Grant, I. (Eds.) 9TH INTERNATIONAL SYMPOSIUM ON FLOW VISUALISATION, (pp. 447-1). Edinburgh: Professor I Grant

Schenkel, T., Stoynov, M., & Oertel, H. (2000). Stability of shear layers in the interface of a binary liquid system: Experiment definition, 3-d numerical problem formulation, 2-d numerical results for steady basic flow, results of ground based preparation experiments on basic flow. In 1st Int. Symp. on Microgravity Research and Appl. in Phys. Sc. and Biotechn, Sorrento, Italy. European Space Agency

Book chapters

Schenkel, T., & Mühlhausen, M.-.P. (2014). Modellierung der Hämodynamik und Fluid-Struktur-Interaktion im virtuellen menschlichen Herzen. In Niederlag, W., Lemke, H.U., Lehrach, H., & Peitgen, H.-.O. (Eds.) Der virtuelle Patient. (pp. 94-109). Berlin: DeGruyter: http://doi.org/10.1515/9783110335668.94

Reports

Baumann, T., & Schenkel, T. (2010). Detached-Eddy-Simulation einer Kanalströmung mit Staukörper (Detached Eddy Simulation of a blunt body in channel flow) - in German. (G-Bericht 2010/2). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Ruck, S., & Schenkel, T. (2009). Abschlussbericht: Numerische Simulation der Fahrzeugaußenumströmung eines BMW 520i Limousine (E60) und BMW 520i Kombi (E61) mit und ohne Änderung der Heckpartie (Numerical simulation of vehicle aerodynamics of a BMW 520i sedan and station wagon with tail variants) - in German. (G-Bericht 2009/4). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Perschall, M., & Schenkel, T. (2009). Numerische Simulation der Durchströmung des Einlaufbauwerkes eines Sekundärkühlkreislaufs für ein nukleares Kraftwerk (Numerical study of flow in the cooling water intake of a nuclear power plant) – in German. (G-Bericht 2009/6). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Perschall, M., & Schenkel, T. (2008). Numerische Simulation zur Untersuchung des Schwappenverhaltens in einer selbsmischenden, wartungsfreien LKW-Batterie (Numerical study of sloshing in a self mixing truck battery) - in German. (G-Bericht 2008/3). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Hoettges, S., & Schenkel, T. (2008). Validierung und Neuauslegung einer fluidischen Fächerstrahldüse (Validation and design of a fluidic chip oscillating jet nozzle) - in German. (G-Bericht 2008/6). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Krittian, S., Hoettges, S., & Schenkel, T. (2008). Validation of ECS Circuit Noise Aero-Acoustic DES Simulation Tool on the Basis of Double Diaphragm Configuration Reference SP 0802670. (G-Bericht 2008/9). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Krittian, S., & Schenkel, T. (2006). CFD-CAA code evaluation. (G-Bericht 2006/4). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Schenkel, T., & Reik, M. (2006). Bewertung der Abbildungsgüte des CFD-Programms Fluent bezüglich typischer BR-Ventilströmungen mit auftretender Kavitation (Evaluation of Fluent – Injector valve flows with cavitation) - in German. (G-Bericht 2006/6). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Krittian, S., & Schenkel, T. (2006). Cockpit ECS Flow and Acoustics - CFD-CAA Analysis. (G-Bericht 2006/8). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Donisi, S., & Schenkel, T. (2005). Strömungssimulation der Umströmung eines Motorrades mit Messroboter und Helm (Flow simulation of a motorcycle helmet including motorcycle and robot dummy) - in German. (G-Bericht 2005/2). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Reik, M., & Schenkel, T. (2005). Numerische Simulation des Einflusses der Einbaugeometrie auf die instationären Wirbelablösungen hinter einem stumpfen Körper (Numerical simulation of the influence of surrounding geometry on the unsteady flow separation of a blunt body in a cylindrical pipe) - in German. (G-Bericht 2005/5). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Reik, M., & Schenkel, T. (2004). Wasserschlag-Belastungsprüfung - Vortex-Sensor (Water shock stress test of a vortex flow meter) - in German. (G-Bericht 2004/4). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Schenkel, T. (2001). Summary Report: Optical Tomography for Fluid Science Convection Experiments. (13027/98/NL/MV). Institute of Fluid Mechanics, Karlsruhe Institute of Technology KIT.

Theses / Dissertations

Burgin, K. (2018). Development of explicit and constitutive lattice-Boltzmannmodels for food product rheology. (Doctoral thesis). Supervised by Spencer, T., Halliday, I., & Schenkel, T. http://doi.org/10.7190/shu-thesis-00150

Schenkel, T. (2002). Thermische Konvektion in einem Zweischichtsystem bei horizontalem Temperaturgradienten. (Doctoral thesis). Universitaet Karlsruhe, Supervised by Oertel, H.J.

Patents

Schenkel, T. (1999). Zustelleinrichtung für ein Schaukelmikrotom. DE 197 40 764. https://register.dpma.de/DPMAregister/pat/register?AKZ=197407641

Presentations

Luong, L., Duckles, H., Schenkel, T., Lopez-Tremoleda, J., Wylezinska-Arridge, M., Arnold, M., ... Evans, P.C. (2014). A pharmacological approach to promote shear stress-dependent anti-inflammatory mechanisms in arteries. Presented at: The 9th international symposium on Biomechanics in Vascular Biology and Cardiovascular Disease, Montreal, Canada

Schenkel, T. (2011). Methane Hydrate – Fuel or Threat?

Schenkel, T. (2011). Methane Hydrate  - A Future Energy Source. Presented at: 7th International Mini-Symposium of the Korean Society of Marine Biotechnology, Busan, Korea

Schenkel, T. (2011). Fluid-Structure-Interaction: From classical divide to challenging reunion. Presented at: 8th Japanese-German Frontiers of Science Symposium, Tokyo, Japan, 2011

Schenkel, T., Donisi, S., & Oertel, H. (2005). KAHMO: A Patient Specific Model of Human Cardiac Fluid Dynamics. Presented at: Second international Symposium Modelling of Physiological Flows, Sesimbra, Portugal

Reik, M., Meyrowitz, G., Schwarz, M., Donisi, S., Schenkel, T., & Kiencke, U. (2005). A 1D Circulation Model as Boundary Condition for a 3D Simulation of a Pumping Human Ventricle. Presented at: IFMBE World Congress, Prague, Czech Republic

Kobayashi, S., Adashi, T., Debatin, K., Schenkel, T., & Oertel, H. (2004). Non-self-similar development of a reflected wave of Mach reflection. Presented at: Symposium on Trends in Applications of Mathematics to Mechanics, Seeheim, Germany

Software / Code

Schenkel, T. (2020). haemoFoam - Modular simulation framework for haemodynamics. github: https://github.com/TS-CUBED/haemoFoam

Other activities

- IMechE committee South Yorkshire Automobile Division.

Postgraduate supervision

Biomechanics, Biological Flows, Numerical Methods, Optical Measurement Methods.

Current research students

James Spendlove - Three-Dimensional Extensions and Biomedical Applications of Multicomponent Lattice Boltzmann Method.

Masoud Bigharaz - Novel ceramic coatings for electroadhesion

Stoyan Kostadinov - Dynamic analysis of a high speed projectile and factors affecting trajectory

Previous research students

Kallum Burgin - Development of explicit and constitutive Lattice-Boltzmann models for food product rheology

Share this page

Cancel event

Are you sure you want to cancel your place on Saturday 12 November?