Laurie Hirsch

Laurie Hirsch

Senior Lecturer in Computing


Summary

I am a senior lecturer at Sheffield Hallam University in the department of computing.

About

My research falls into two main areas. The first concerns the application of evolutionary algorithms to text classification. In recent years we have evolved accurate and human readable Apache Lucene search queries to solve problems in text classification. The most successful system is also the simplest and uses a genetic algorithm to generate SpanFirst queries. More complex systems using genetic programming and a range of query operators such as AND, NOT and SpanNear have also been created. The second area involves the automatic generation of a graph from unstructured online text. The graph is based on word co-occurrence and word frequency and can be used as a summary of large and small documents or document collections. You can test a slightly limited version for yourself here.

I am currently working in the area of opinion mining and sentiment analysis.

I am course leader for the MSc Web and Cloud Computing. I also teach in the area of web application development (most recently with a focus on Groovy and Grails) and intelligent web applications with a particular focus on collective intelligence.

Teaching

School of Computing and Digital Technologies

College of Business, Technology and Engineering

Publications

Journal articles

Ogunleye, B., Maswera, T., Hirsch, L., Gaudoin, J., & Brunsdon, T. (2023). Comparison of topic modelling approaches in the banking context. Applied Sciences, 13 (2), 797. http://doi.org/10.3390/app13020797

Hirsch, L., & Brunsdon, T. (2018). A comparison of Lucene search queries evolved as textclassifiers. Applied Artificial Intelligence, 32 (7-8), 768-784. http://doi.org/10.1080/08839514.2018.1506972

Domdouzis, K., Akhgar, B., Andrews, S., & Gibson, H. (2016). A social media and crowd-sourcing data mining system for crime prevention during and post-crisis situations. Journal of Systems and Information Technology, 18 (4), 364-382. http://doi.org/10.1108/JSIT-06-2016-0039

Hirsch, L., Saeedi, M., & Hirsch, R. (2005). Evolving text classification rules with genetic programming. Applied Artificial Intelligence: An International Journal, 19 (7), 659-676. http://doi.org/10.1080/08839510590967307

Hirsch, L., Saeedi, M., & Hirsch, R. (2004). Evolving Text Classifiers with Genetic Programming. . http://doi.org/10.1007/978-3-540-24650-3_29

Hirsch, L., Saeedi, M., Cornillon, J., & Litosseliti, L. (2004). A structured dialogue tool for argumentative learning. Journal of Computer Assisted Learning, 20 (1), 72-80. http://doi.org/10.1111/j.1365-2729.2004.00068.x

Conference papers

Ogunleye, B., Brunsdon, T., Maswera, T., Hirsch, L., & Gaudoin, J. (2024). Using Opinionated-Objective Terms to Improve Lexicon-Based Sentiment Analysis. In Lecture Notes in Networks and Systems, (pp. 1-23). Springer Nature Singapore: http://doi.org/10.1007/978-981-97-3292-0_1

Hirsch, L., Di Nuovo, A., & Prasanna, H. (2021). Document Clustering with Evolved Single Word Search Queries. In IEEE Congress on Evolutionary Computation, Krakow, Poland (Virutal), 28 June 2021 - 1 July 2021. IEEE: http://doi.org/10.1109/CEC45853.2021.9504770

Haddela, P., Hirsch, L., Gaudoin, J., & Brunsdon, T. (2021). Human Friendliness of Classifiers: A Review. In 2nd International Conference on Emerging Technologies in Data Mining and Information Security, Kolkata, West Bengal, India, 2 July 2020 - 4 July 2020 (pp. 293-303). Springer: http://doi.org/10.1007/978-981-33-4367-2_29

Kankanamalage, P.H., Hirsch, L., Brunsdon, T., & Gaudoin, J. (2020). Use of interpretable evolved search query classifiers for sinhala documents. Proceedings of the Future Technologies Conference (FTC) 2020, 790-804. http://doi.org/10.1007/978-3-030-63128-4_59

Baldwin, J., Brunsdon, T., Gaudoin, J., & Hirsch, L. (2018). Towards a social media research methodology: Defining approaches and ethical concerns. International journal on advances in life sciences, 10. http://www.iariajournals.org/life_sciences/

Hirsch, L., & Di Nuovo, A. (2017). Document clustering with evolved search queries. In 2017 IEEE Congress on Evolutionary Computation (CEC), Proceedings : 5-8 June 2017, Donostia - San Sebastián, Spain, (pp. 1239-1246). Piscataway, NJ: IEEE: http://doi.org/10.1109/CEC.2017.7969447

Robert Wilson, B.M., Khazaei, B., & Hirsch, L. (2017). Towards a cloud migration decision support system for Small and Medium enterprises in Tamil Nadu. 2016 IEEE 17th International Symposium on Computational Intelligence (CINTI).

Robert Wilson, B.M., Khazaei, B., & Hirsch, L. (2016). Cloud adoption decision support for SMEs Using Analytical Hierarchy Process (AHP). 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE).

Andrews, S., & Hirsch, L. (2016). A tool for creating and visualising formal concepttrees. CEUR Workshop Proceedings, 1637, 1-9. http://ceur-ws.org/Vol-1637/

Hirsch, L., & Andrews, S. (2016). Visualising text co-occurrence networks. CEUR Workshop Proceedings, 1637, 19-27. http://ceur-ws.org/Vol-1637/

Robert Wilson, B.M., Khazaei, B., & Hirsch, L. (2016). Enablers and barriers of cloud adoption among Small and Medium Enterprises in Tamil Nadu. In IEEE International Conference on Cloud Computing for Emerging Markets, Bangalore, India, 25 November 2015 - 27 November 2015 (pp. 140-145). IEEE: http://doi.org/10.1109/CCEM.2015.21

Robert Wilson, B.M., Khazaei, B., Hirsch, L., & Kannan, S.T. (2015). CMDSSI : a decision support system for cloud migration for SMEs in India. In IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India, 2014 - 2014. IEEE: http://doi.org/10.1109/ICCIC.2014.7238490

Wilson, B.M.R., Khazaei, B., Hirsch, L., & Kannan, S.T. (2015). CMDSSI: A decision support system for cloud migration for SMEs in India. 2014 IEEE International Conference on Computational Intelligence and Computing Research, IEEE ICCIC 2014, 293-299. http://doi.org/10.1109/ICCIC.2014.7238490

Gibson, H., Andrews, S., Domdouzis, K., Hirsch, L., & Akhgar, B. (2014). Combining Big Social Media Data and FCA for Crisis Response. In 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, (pp. 690-695). The Institute of Electrical and Electronics Engineers: http://doi.org/10.1109/UCC.2014.112

Brewster, B., Andrews, S., Polovina, S., Hirsch, L., & Akhgar, B. (2014). Environmental Scanning and Knowledge Representation for the Detection of Organised Crime Threats. In Hernandez, N., Jäschke, R., & Croitoru, M. (Eds.) Graph-Based Representation and Reasoning, (pp. 275-280). Springer International Publishing: http://doi.org/10.1007/978-3-319-08389-6_22

Domdouzis, K., Andrews, S., Gibson, H., Akhgar, B., & Hirsch, L. (2014). Service-Oriented Design of a Command and ControlIntelligence Dashboard for Crisis Management. In Big Data, Intelligence Management and Analytics Workshop (BDIMA 2014), 7th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2014), London, 2014 - 2014. http://bdima2014.wix.com/shuworkshop

Andrews, S., Akhgar, B., Yates, S., Stedmon, A., & Hirsch, L. (2013). Using formal concept analysis to detect and monitor organised crime. In Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., & Christiansen, H. (Eds.) Flexible Query Answering Systems, (pp. 124-133). Heidelberg: Springer: http://doi.org/10.1007/978-3-642-40769-7_11

Hirsch, L., & Tian, D. (2013). Txt2vz: a new tool for generating graph clouds. In 20th International Conference on Conceptual Structures, ICCS 2013, Mumbai, India, 10 January 2013 - 12 January 2013 (pp. 322-331). Berlin: Springer: http://doi.org/10.1007/978-3-642-35786-2_25

Hirsch, L. (2010). Evolved Apache Lucene SpanFirst Queries are Good TextClassifiers. Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1-8. http://doi.org/10.1109/CEC.2010.5585955

Hirsch, L., Saeedi, M., & Hirsch, R. (2007). Evolving Lucene search queries for text classification. In Genetic and Evolutionary Computation Conference, London. http://dl.acm.org/citation.cfm?doid=1276958.1277279

Hirsch, L., Saeedi, M., & Hirsch, R. (2005). Evolving rules for document classification. In 8th European Conference, EuroGP 2005, Lausanne, Switzerland, 30 March 2005 - 1 April 2005 (pp. 85-95). Berlin: Springer: http://doi.org/10.1007/978-3-540-31989-4_8

Hirsch, L., & Saeedi, M. Modelling exchange using the prisoner’s dilemma and genetic programming. In Proceedings of the Computer Society of Iran Computing Conference 1999.

Robert Wilson, B.M., Khazaei, B., & Hirsch, L. (2016). A cloud migration decision support system for SMEs in Tamil Nadu (India) using AHP. In International Symposium of the Analytic Hierarchy Process, London, United Kingdom, 4 August 2016 - 7 August 2016. http://www.isahp.org/

Book chapters

Andrews, S., Day, T., Domdouzis, K., Hirsch, L., Lefticaru, R.-.E., & Orphanides, C. (2017). Analyzing crowd-sourced information and social media for crisis management. In Akhgar, B., Staniforth, A., & Waddington, D. (Eds.) Application of social media in crisis management : advanced sciences and technologies for security applications. (pp. 77-96). Springer International Publishing: http://doi.org/10.1007/978-3-319-52419-1_6

Books

Hill, R., Hirsch, L., Lake, P., & Moshiri, S. (2013). Guide to cloud computing: principles and practice. London: Springer. http://www.springer.com/computer/communication+networks/book/978-1-4471-4602-5

Theses / Dissertations

Haddela Kankanamalage, P.S. (2023). An analysis of search query evolution in document classification and clustering. (Doctoral thesis). Supervised by Hirsch, L. http://doi.org/10.7190/shu-thesis-00587

Ogunleye, B.O. (2022). Statistical learning approaches to sentiment analysis in the Nigerian banking context. (Doctoral thesis). Supervised by Gaudoin, J., Brunsdon, T., Maswera, T., & Hirsch, L. http://doi.org/10.7190/shu-thesis-00471

Presentations

Fernandes, C., Zasada-James, J., Adhikari,, K., Ul Hasan, N., Baldwin, J., & Hirsch, L. (2024). Fog Computing Assisted Anaesthesia Monitoring to Enhance Realtime Surgical Efficiency. Presented at: 4th International Symposium on Sensing and Instrumentation in IoT Era, Azores, Portugal, 2024

Postgraduate supervision

Maasoumi Sarvestani, Mohammad: 'A Comparative Study of E-Learning for programming in the UK and Iran' (Second Supervisor)

Attard, Kenneth: 'Increasing Efficiency in Cloud Computing from the User Perspective by Adaptive Profiling' (Second Supervisor)

Gopolang, Bontle: 'Using technology to improve sexual and reproductive health education in secondary schools in Botswana' (Second Supervisor)

Robert Wilson, Berlin: 'A Decision Support System for Cloud Migration for SMEs in South India' (Second Supervisor)

Cancel event

Are you sure you want to cancel your place on Saturday 12 November?

}