ada10578-46c8-4b8a-9637-eae57508e268

Skip to content

Paul Bingham

Professor Paul A Bingham

Professor of Glasses and Ceramics

Summary

Professor Paul A. Bingham has over 20 years' experience in his field and has a strong international research group working primarily in glasses, ceramics, energy and waste management.

Paul contributes to teaching in Materials Engineering and he is a past Course Leader for our Part-Time and Full-Time Materials Engineering degree courses (FdEng, BEng (Hons)).


  • About

    Professor Paul A. Bingham gained a BEng (Hons) degree in Materials Science and Engineering from the University of Sheffield in 1995. He then pursued PhD studies, also at the University of Sheffield, on the topic of glass science and technology, and was awarded his PhD in 2000. In 1999 Paul joined Glass Technology Services Ltd as a Glass Technologist, and was promoted to Senior Glass Technologist in 2002. In this role Paul carried out industrially-focused R&D and problem-solving, ranging from development of new environmentally-friendly glasses to forensic examination and glass plant production problems.

    In 2004 Paul returned to academia, joining the Immobilisation Science Laboratory (ISL) at the University of Sheffield as a Postdoctoral Research Associate. In this role Paul worked on glasses and ceramics for the safe immobilisation of radioactive and toxic wastes, and also on energy-friendly materials development and waste management.

    Paul joined Sheffield Hallam University in January 2012 as a Senior Lecturer in Materials Engineering, and became a Reader in Materials Engineering in 2015 and Professor of Glasses and Ceramics in 2018. He contributes to teaching of Materials Engineering, with specific focus on materials composition / structure / property relations; and ceramic and glass technology. Paul is a past Course Leader for our Part-Time and Full-Time Materials Engineering degree courses (FdEng, BEng (Hons)) and led the past two successful re-accreditations of these courses by the Institute of Materials, Minerals and Mining (IOM3).

    To date Paul has published over 80 research papers in the fields of glasses; glass-ceramics; energy and the environment; waste management and nuclear and toxic waste treatment; advanced spectroscopy; and manufacturing technologies. He has co-edited and co-authored a book on the subject of low-energy, environmentally-friendly glasses and he has a strong track record in attracting research funding from bodies as diverse as UK Research Councils, Innovate UK, BEIS, European Union, US Department of Energy and industry. He currently holds a number of active research grants. He is Director of Studies for several PhD students and line manages many postdoctoral researchers, visiting academics and interns.

    Paul is a Fellow of the Society of Glass Technology and sits on its Basic Science and Technology Committee. He is a Fellow of the Higher Education Academy and is also a member of the Institute of Physics and the Association for the History of Glass. He is a reviewer for over 10 international journals, the US DoE Nuclear Energy Universities Programme and EU H2020 funding bids.

    Paul sits on several international and national committees. He is a member of the International Commission on Glass Technical Committee 5: Waste Vitrification and the RAL-ISIS Neutron User Committee. He was elected onto the Sector Decarbonisation Roadmap Committee for the ceramics industry, which directly advises the UK Government in this area. He is also a lead Academic Advisor to Glass Futures, which aims to develop a state-of-the-art training and R&D facility in glass. Paul also carries out a wide range of consultancy activities. He has consulted for the UK Government's Committee on Climate Change and for the ceramics, optoelectronics and glass industries. He also acts as an international expert witness and has worked with some of the world's largest and most well-known companies in his field. He has organised multiple conferences and was Chair of the Local Organising Committee for the highly successful Centenary Conference of the Society of Glass Technology in 2016. He has given many Invited Presentations at international conferences, and actively engages with the international academic and industrial communities.

    Staff roles:

     - Professor of Glasses and Ceramics since 2018; previously Reader in Materials Engineering (2015 - 2018); and Senior Lecturer in Materials Engineering (2012 - 2015);

     - Past Course Leader (2012 - 2016) for SHU Part-Time and Full-Time Materials Engineering degree courses (FdEng, BEng (Hons)) in Materials Engineering and Forensic Engineering;

     - Led successful re-accreditation of SHU Materials Engineering degree courses by the Institute of Materials, Minerals and Mining (IOM3) in 2013 and in 2016;

     - Mentor for junior academic staff;

     - Member of SHU Research Concordat Sub-Committee;

     - Member of the ACES KTP Steering Group;

     - BMRC / MERI Research Engagement Committee member;

     - Laboratory Manager for the MERI Ceramics and Glass Laboratory and MERI Mössbauer Spectroscopy Laboratory;

     - Member of MERI Executive Committee;

     - Member of MERI mini-REF panels for both 2014 and 2020 REF submissions;

     - ACES Faculty Research Ethics Reviewer.



    Specialist areas of interest:

    - Materials Engineering;
    - Energy;
    - Environment;
    - Glasses and Ceramics.

  • Teaching

    Department of Engineering and Mathematics

    Science, Technology and Arts

    Module Leader for: 

     - Engineering Ceramics and Polymers - this module delivers a thorough understanding of ceramic and polymeric materials.

    Other teaching:

     - Supervision of FdEng, BEng(Hons), MEng and MSc project students


  • Research

    • Polymers, Nanocomposites and Modelling Research Centre
    • Materials and Engineering Research Institute

    Postdoctoral and Visiting Researchers 

    September 2018 – Ongoing: BiomAsh – Optimising biomass ash to reduce environmental impact of amber & green container glass

    Funded by BEIS. Project PDRA: Dr. Wei Deng

    This project is a collaboration of 6 partners, with in-kind support from the British Glass trade associations, two glass manufacturers and three power plants, with aims to tackle the energy trilemma in the UK and global glass industries.

    The project will explore changes in raw materials composition and balance by incorporating waste ashes from biomass energy-from-waste (EfW) plants, including partial replacement of mined / man-made raw materials in a glass melting furnace, to reduce glass melting temperatures, times and dependence on finite raw materials, and thus to reduce consumption, costs and CO2 emissions by 5-10% across the UK glass industry.

    The critical innovative aspect of this work will be to apply chemistry techniques to biomass ash by-products to develop new, cost-effective raw materials that can be introduced into glass melting processes (the first new glassmaking raw materials to be implemented in 50 years) to reduce high temperature viscosity and provide lower energy input for fusion, directly impacting on all 3 aspects of the energy trilemma. The project builds on a successful Early Stage programme and is targeted at developing scalable technology that can be introduced into the UK’s 22 glass manufacturing sites.

    September 2018 – Ongoing: EnviroGlass 2 – Optimising biomass ash to reduce the environmental impact of glass manufacture

    Funded by Innovate UK. Project PDRA: Dr. Daniel Backhouse

    This project, led by GTS and supported by British Glass (representing the 8 main UK flat and container glass manufacturers) and Sheffield Hallam University (SHU), creates a new consortium with Ashwell Biomass, Templeborough Biomass Power Plant, Power Minerals and Glassworks Services. This project brings together three industrial sectors (Glass, Ceramics, Biomass Energy) for the first time to develop new raw materials for glass and ceramics manufacture. This project builds upon outputs from IUK Energy Catalyst Feasibility Study (IUK: 132334) 'EnviroGlass Melting', which assessed a range of wastes as potential new raw materials in glass manufacture to reduce melting temperatures, CO2 emissions and costs. The project proposed here builds upon these findings to address the challenges identified, developing new raw materials and demonstrating suitability for glass (TRL=7) and ceramics (TRL=3-4) industries to improve productivity and reduce:

    (i)    Energy requirements (up to 10%)

    (ii)   Raw materials costs (up to 10%)

    (iii)  UK landfill (up to 75kT/yr)

    March 2018 - Ongoing: Carboglass: Transformative Engineering Materials for Reduced Energy and Waste Consumption in Advanced Manufacturing Processes   

    Funded by EPSRC. Project PDRA: Dr. Martin Wilding 

    The overarching goal of this project is to establish the technological potential, through a proof - of - concept study, of an entirely new family of glassy materials which could safely and stably incorporate high levels of CO2 by locking it away within the structure of the material in a stable form that is resistant to air, heat and light. In doing so it is believed this will present multiple new properties and in so doing this will enable transformative industrial changes in the way we manufacture, use, recycle and think about glass. Carboglass could provide multiple new innovation platforms for advanced materials and manufacturing technologies; carbon capture and storage; nuclear decommissioning; and energy and CO2 emissions reduction, thereby impacting upon policy, health and quality of life; delivering the capability to disrupt existing business models and contributing towards a more resilient, productive and prosperous nation. This research could lead to new technologies that provide the UK glass industry with CO2 emissions savings of up to 50% (1.25MT/yr) and increase resource efficiency by up to 20% (1 MT/yr, saving £100M/yr). It could also provide a new path for treatment of carbon-rich radioactive wastes, and could become a leading carbon capture and storage (CCS) technology. This disruptive development could lead to new high-skilled UK jobs and offer a technology platform for uptake by other industries. Public benefits of this research will include improved environment and quality of life (lower CO2 emissions and energy use; safer nuclear waste, new functional materials leading to new products and processes); disruption of business models (UK jobs and wealth creation); and raised public interest in science and technology. Carboglass represents an opportunity for the UK to lead the world in new, clean and green technologies and simultaneously provides multiple new pathways for a resilient, productive and healthy UK.

    January 2018 - Ongoing: New Industrial Systems: Manufacturing Immortality

    Funded by EPSRC. Project PDRA: Dr. Tzu-Yu Chen

    The development of future real-world technologies will be dependent on our ability to understand and harness the underlying principles of living systems, and to direct communication between biological parts and man-made materials. Recent advances in DNA synthesis, sequencing and ultra-sensitive analytical techniques amongst others, have reignited interest in extending the repertoire of functional materials by interfacing them with components derived from biology, blurring the boundary between the living and non-living world. These bio-hybrid systems hold great promise for use in a range of application areas including, for example, the sensing of toxins or pollutants in our environment, diagnosing life-threatening illnesses in humans and animals, or delivering drugs to specific locations within patients bodies to treat a range of diseases, e.g. cancer.

    During this project we will develop innovative manufacturing methods to enable the reliable and scaleable production of evolvable bio-hybrid systems that possess the inherent ability to sense and repair damage, so-called 'immortal' products. This will ultimately lead to the development of products and devices that can continue to function without needing repair or replacement over the course of their life. For example, imagine a mobile phone that can self-repair its own screen after being dropped, or a circuit board in a laptop computer that can repair itself after being short-circuited. The outputs of this project have the potential to provide solutions to some of our greatest societal challenges and by doing so to reinvigorate the UK manufacturing industry by establishing it as a world leader in the production of self-healing systems. Efforts will focus on three specific application areas. These are:

    1. Electrochemical energy devices, e.g. fuel cells and batteries that are needed to power our everyday lives, from mobile phones to electric cars.

    2. Consumer electronics, which underpin many of the core technologies that we encounter and use on a day-to-day basis, e.g. computers or televisions.

    3. Safety critical systems that are used in the nuclear industry and deep sea technologies, e.g. deep sea cables that can withstand many years of use without needing to be replaced. 

    2013 - ongoing: Glass chemistry and processing issues - radioactive waste glasses. 

    Funded by US Department of Energy International Cooperation Programme.

    Certain nuclear wastes within the US DOE complex contain relatively high concentrations of sulphur, which has a low solubility in borosilicate glass. This dictates that the waste be blended with lower sulphur concentration waste sources or heavily washed to remove sulphur levels prior to vitrification. High concentrations of sulphur can also impose a limit on waste loading, which in turn hinders waste throughput for a vitrification plant. It is therefore desirable to develop enhanced borosilicate glass compositions with improved sulfur solubility. This project has focussed on developing improved understanding of the mechanisms and effects of sulphur incorporation in glasses relevant to radioactive waste vitrification. Other issues associated with high-iron wastes, phosphorus in wastes, and cold cap melters are also currently being investigated.

    Past Research Projects


    October 2016 - September 2017: Briquetting of recycled glass fines for energy and CO2 reduction in the glass industry.

    Funded by EPSRC. Project PDRA: Dr Wei Deng

    The global glass manufacturing sector uses 140 - 220 Terawatt-hours of energy and emits 50-60 million tonnes of CO2 per year. Manufacturing inefficiencies are such that, without intervention and increased product demand, global CO2 emissions from glass making are forecast to increase by 20% by 2019. In the UK alone the glass industry produces over 3 million tonnes of glass per year, using 4.5 Terawatt-hours of energy (1.4 Megawatt-hour per tonne of glass melted), and emits 2 million tonnes of CO2. The energy required for melting glass in a furnace accounts for 75% of the energy consumption. Melting furnaces typically have 50-60% efficiency; however, the introduction of recycled glass (cullet) significantly reduces glass melting energy requirements and CO2 emissions. The availability of quality cullet is an industry-wide challenge - 20% is rejected every year and sent to landfill. In this project we are studying a novel briquetting process that turns rejected cullet (fines) into valuable waste materials re-introduced into glass manufacture. The technology being developed has potential to (i) reduce the glass industry's CO2 emissions by up to 8%; (ii) Secure the long term UK & global supply of cullet and (iii) reduce the industry's energy costs by 4-8%. This project utilises a test briquetting line, with laboratory scale glass melting and testing equipment.

    July 2016 - June 2017: Lower-energy routes to commercial soda-lime-silica glass manufacture through changes in the raw materials balance. 

    Funded by Innovate UK. Project PDRA: Dr Charikleia Spathi

    Commercial glass making is a key industrial sector that contributes £1.3bn p/a to the UK economy and is worth $98bn globally. Although significant improvements have been made over the last 20 years, it is still an environmentally inefficient sector that globally produces 108MT of flat and container glass, accounting for c. 220 TWh of energy consumption and 50-60MT of CO2 emissions. In the UK alone, the sector produces 3MT of glass, emits 2MT of CO2, and uses 4.5TWh of energy. The subsequent UK energy cost is £70m p/a. In an industry that is growing by 7.2% p/a this poses a significant environmental challenge. The fundamental issue in glass making is the inefficiency of melting processes which consume 75% of the total energy. Commercial furnaces operate at 50-60% efficiency because high temperatures of 1500-1600oC are required to melt the raw materials. This project is a feasibility study to develop lower energy routes to produce glass by changing the raw materials balance and partially replacing standard raw materials with waste stream and by-product materials. If successful the process could save c. 225-450 GWh of energy and reduce CO2 emissions by 200,000T p/a in the UK.

    2014 - 2017: Light innovative materials for enhanced solar efficiency (LIMES). 

    Funded by EU Solar-Era Net.

    There is a global drive to lower the cost of solar generated electricity. The cost per watt peak (€/Wp) can be reduced by increasing PV efficiency, reducing cost of the Balance of System (BOS) and minimizing the module costs. Module assembly is material extensive and constitutes a significant part of the price. Currently, 3 mm glass is the predominant cover of solar modules and it implies 30 % of the price. Reduction of encapsulant materials can help to minimize the foot print of the solar panel by minimized cost over the whole chain from raw materials to installation. The aim of the project is to exploit the development of 1 mm toughened glass as encapsulant to produce a light weight, low cost PV module with enhanced efficiency. We are developing new glasses and new coatings to improve the physical properties of the cover material of PV modules. Furthermore, novel toughening techniques of thin glass are being investigated, and prototypes assembled. We strive towards:
    - Ultrathin glass-glass modules;
    - Eliminating the transmission limit of solar glasses;
    - Ultra-robust module designs with extended lifetime.

    Collaborators and Sponsors:

    Paul works with a wide range of industrial collaborators and sponsors, from large multinationals to SME's, to Government and NGO's and other academic institutions. Here is a selection of these:

    Johnson Matthey, Morgan Advanced Materials, Pilkington NSG, Glass Technology Services, Lucideon, British Glass Manufacturers Confederation, British Ceramics Confederation, Wright Engineering, Cogent Power, Mayflower Engineering, Mansol (Preforms), University of Oxford (UK), University of Warwick (UK), University of Birmingham (UK), University of Nottingham (UK), Loughborough University (UK), Université de Pierre et Marie Curie de Paris (France), University of Padova (Italy), University of Brescia (Italy), Tokyo Metropolitan University (Japan), Rutgers University (USA), Savannah River National Laboratory (USA), and Pacific Northwest National Laboratory(USA).

  • Publications

  • Other activities

    - External PhD examiner (UK and international);
    - Fellow of the Society of Glass Technology;
    - Member of Society of Glass Technology Board of Fellows and Basic Science and Technology Committee;
    - Member of International Commission on Glass Technical Committee 5: Waste Vitrification;
    - Member of the RAL-ISIS UK Neutron User Committee;
    - Member of the UK Ceramics Sector 2050 Decarbonisation Roadmap Committee;
    - Chair of the Local Organising Committee, Centenary Conference of the Society of Glass Technology, 2016;
    - Academic advisor to the British Glass Futures initiative;
    - Peer reviewer for the U.S. Department of Energy Nuclear Energy Universities Program;
    - International expert peer reviewer for EU FP7 and H2020 proposals;
    - Regular reviewer for over 10 international journals.

  • Postgraduate supervision

    Current PhD Students:

    - ALLSOPP, Ben. Development of novel glass dopants for enhanced solar efficiency glazing.
    - BIGHARAZ, Masoud. Development and analysis of new ceramic materials for electroadhesive applications.
    - EALES, James. Understanding composition-structure-property-phase relations in high-Fe2O3 radioactive waste glasses for the Hanford site.
    - LOVE, Katrina. Phosphate solubility and impacts on properties of radioactive waste glasses for the Hanford site.
    - MODARRESIFAR, Farid. Structure-viscosity relations in silicate and aluminosilicate glasses.
    - MUHAMMED, Khalid. Development of novel processing routes for electrical ceramic production.
    - SCRIMSHIRE, Alex. Advanced spectroscopy of ceramic materials for catalysis.
    - RAUTIYAL, Prince. Understanding the structure, properties and performance of glasses for radioactive waste immobilisation using advanced spectroscopic techniques.
    - RIGBY, Jessica. Understanding cold cap - glass melt migration in radioactive waste glass melting for the Hanford site.
    - WIE-ADDO, Gloria. Reducing energy demand and CO2 emissions from industrial ceramic manufacture.


    Past PhD Students:

    - VAISHNAV, Shuchi. Understanding the structural effects and solubility behaviour of sulphur in radioactive waste glasses.
    - CHRISTOPOULOU, Georgia. Understanding the in-service behaviour of high-temperature thermal insulation materials.
    - YAMBISSA, Mubuabua. Understanding diamond preservation conditions in Angolan kimberlites using advanced spectroscopic techniques.

  • Media

    - Hallam PhD students driving improvements in nuclear waste disposal, 18thDecember 2018.
    - Your cracked phone screen may soon be able to repair itself…”, article and interview on self-healing materials, The Yorkshire Post, 11th January 2018, p. 15.
    - Interview on self-healing materials, Howard Pressman’s DriveTime Show, BBC Radio Sheffield, 11thJanuary 2018. 


Share this page

Cancel event

Are you sure you want to cancel your place on Saturday 12 November?

Close